
Chemistry3D: Robotic Interaction Toolkit for Chemistry Experiments

Shoujie Li1∗, Yan Huang1∗, Changqing Guo1∗, Tong Wu1, Jiawei Zhang1, Linrui Zhang1, Wenbo Ding1,2†

Fig. 1: Illustration of the Chemistry3D. Chemistry3D integrates a robot system, chemical experiment, and simulation engine,
providing interfaces for robot manipulation, visual inspection, and fluid flow control and enabling reaction visualization.

Abstract— The advent of simulation engines has revolution-
ized learning and operational efficiency for robots, offering cost-
effective and swift pipelines. However, the lack of a universal
simulation platform tailored for chemical scenarios impedes
progress in robotic manipulation and visualization of reaction
processes. Addressing this void, we present Chemistry3D, an
innovative toolkit that integrates extensive chemical and robotic
knowledge. Chemistry3D not only enables robots to perform
chemical experiments but also provides real-time visualization
of temperature, color, and pH changes during reactions. Built
on the NVIDIA Omniverse platform, Chemistry3D offers in-
terfaces for robot operation, visual inspection, and liquid flow
control, facilitating the simulation of special objects such as
liquids and transparent entities. Leveraging this toolkit, we have
devised RL tasks, object detection, and robot operation scenar-
ios. Additionally, to discern disparities between the rendering
engine and the real world, we conducted transparent object de-
tection experiments using Sim2Real, validating the toolkit’s ex-
ceptional simulation performance. The source code is available
at https://github.com/huangyan28/Chemistry3D, and a related
tutorial can be found at https://www.omni-chemistry.com.
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I. INTRODUCTION

Chemistry is a constantly evolving and experimental dis-
cipline [17]. The birth of a new substance or material
often requires thousands of experiments, making chemical
experimentation demanding for researchers. The repetitive
nature of this work not only imposes immense labor inten-
sity on researchers and chemical engineers (Some chemical
engineers often work up to 50 hours a week in the US, says
the Bureau of Labor Statistics [18]) but also poses threats to
their physical health due to exposure to harmful chemicals.
In today’s rapidly advancing era of embodied intelligence
technology, proposing a 3D simulator that includes robot
operations and chemical reaction processes is imperative,
which not only improves the efficiency of experiments and
reduces the cost of experiments but also liberates human
beings from heavy scientific experimental tasks.

Chemical experiments contain many chemical manipula-
tion and visual detection tasks, which are dangerous if the
robot is trained directly in a real environment. Although
considerable research has been conducted into robot simula-
tion systems [19]–[23], a dedicated chemical 3D simulation
system for robots has yet to be proposed. Current research
on chemical robots mainly focuses on algorithmic aspects,
such as organic synthesis methods [24]–[26] and reinforce-
ment learning(RL) [13], [27]–[30] to improve yield. This is
because chemistry and robotics are interdisciplinary fields,
and designing a chemical 3D simulation system tailored for
robots requires addressing numerous challenges, including
but not limited to: (1) Immature rendering engines for
liquids and transparent objects: Chemical experiments
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TABLE I: Comparison of Chemistry3D with Other Researches and Toolkits
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Manipulation Information
Perception Information ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Transparent Object Detection ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Contact Information ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Reinforcement Learning ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Embodied Intelligence ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Task Subdivision ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Chemical Information
Intermediate States ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Color Information ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗
Spectrum Information ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Information Collection ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Thermodynamic Property ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
pH Value ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Temperature ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Fluid Simulation ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Database ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Organic Reaction ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Inorganic Reaction ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

involve many liquids and transparent objects, and achieving
efficient and realistic rendering engines is difficult [31].
(2) Vast chemical reaction databases: Chemistry is a
complex discipline covering various reaction types such as
organic, inorganic, liquid, solid, and gas; thus, implementing
chemical simulation requires extensive database support [32].
(3) Complex calculation methods and parameters: Real
chemical reactions involve multiple parameters such as heat,
temperature, pH, color, etc.; visualizing these parameters
requires a deep understanding of chemistry and complex
calculation methods [33]. Therefore, to realize a chemical 3D
simulation system tailored for robots, it is necessary to span
multiple disciplines, such as chemistry, computer graphics,
and robotics, and address the various technical challenges
mentioned above.

The advancements in 3D rendering technology and the
development of large language models (LLM) have presented
us with new opportunities. Omniverse [34], introduced by
NVIDIA, is an open virtual collaboration and simulation
platform encompassing a wide array of 3D modeling tools,
renderers, animation tools, and physics engines. It enables
robots to create more realistic and interactive virtual envi-
ronments [35]. Therefore, leveraging NVIDIA’s Omniverse
simulator, we propose a high-performance simulating toolkit
for chemical experiments named Chemistry3D, as shown
in Fig.1. This toolkit allows robots to conduct organic,
inorganic, and various other experiments within simulated
environments. Furthermore, to enhance the versatility of
the simulator, we have opened convenient data interfaces,
enabling operators to add unknown chemical reactions to the
database effortlessly.

The contributions of this paper are as follows: (1)
Novel 3D scene for chemical experiments: We introduce
a pioneering scene specifically designed for chemical exper-
iments, featuring a wide range of chemical containers and
robots. (2) Establishment of a comprehensive chemical
dataset: We have curated a dataset of over 1,000 inor-
ganic and 100,000 organic reactions, providing intermediate
products and real-time feedback on changes in temperature,
color, and pH. (3) Performance validation through vari-
ous experiments: Our simulation supports diverse robotic
experiments, including RL-based object grasping training,

chemical experiment operations guided by LLM, and visual
Sim2Real experiments.

II. RELATED WORK

In the realm of chemical experiment simulations, previous
toolkits and researches have generally neglected the testing
of robotic manipulation. Our work addresses this gap by
focusing on robotic operations within chemical experiments.
We conducted a comparative analysis of Chemistry3D and
other tools across the fields of robotics and chemistry, as
summarized in Table I. Unlike existing researches or toolkits
that primarily concentrate on chemical reaction generation,
our approach emphasizes robotic manipulation, including RL
for robots and the development of embodied intelligence
through integration with LLM.

A. Chemical Experiment Simulators

Traditionally, chemical reaction simulators focus on
molecular-level processes. For example, Interactive Chem-
istry [1] models molecular collisions, while Computational
Fluid Dynamics (CFD) [2] methods simulate gas reactions.
Organic chemistry tools like ORD [3] and ORDerly [4]
provide structured databases for reaction characterization,
and ChemSpider [5] serves as a search tool for chemical
substances. In inorganic chemistry, platforms like ChemAxon
[6] and RXN for Chemistry [7], [36] are used for predicting
reactions and optimizing synthesis pathways. ChemReaX
[8] offers basic simulations with data on thermochemistry
and reaction intermediates. However, these simulators are
designed primarily for theoretical chemical research. En-
abling robots to autonomously perform required chemical
experiments remains an unsolved challenge.

B. Integrating Robotics in Chemical Experiment Simulations

Few simulators effectively integrate chemical experiments
with robotics. Existing works focusing on robotic opera-
tions typically target specific tasks. For example, Robot Air
Hockey [9] is designed for Sim2Real applications in playing
air hockey, while Panda MuJoCo Gym [10] benchmarks
reinforcement learning (RL) tasks such as pushing, slid-
ing, and object manipulation. Additionally, a Unity-based
Simulator [11] creates game-like scenarios for experimental
manipulation, primarily for educational purposes. In terms of
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Fig. 2: The framework of the inorganic reaction simulator. It
processes the input reactants as a pipeline and outputs the product
information on component, representation, and mid-state.

perception tasks, CABD [12] offers benchmark datasets for
image recognition of chemical apparatus, and ChemGymRL
[13] provides detailed information on intermediates of chem-
ical reactions specifically for RL purposes. For system
architecture design, various pipelines have been developed
to enable autonomous laboratory operations using machine
learning (ML) [14] and natural language processing (NLP)
[15]. Furthermore, ARChemist [16] has introduced modular
managers for processing chemical recipes and interacting
with robots, highlighting the emerging integration of robotics
in the domain of chemical experiments.

III. CHEMISTRY3D

Chemistry3D focuses on three main aspects: chemistry
simulation, virtual chemical laboratory environments, and
robotic manipulation. Chemistry3D begins by offering accu-
rate and detailed models for simulating chemical reactions,
ensuring reliable results for both organic and inorganic pro-
cesses. These simulations are embedded within virtual labo-
ratory environments that closely replicate real-world chem-
ical experiments. Compared to previous chemistry toolkits
[13], Chemistry3D uniquely supports realistic scene simu-
lations and allows for physical interactions between robots
and objects. Additionally, Chemistry3D integrates robotic
manipulation, enabling robots to autonomously perform and
optimize chemical reactions, thereby seamlessly combining
robotic automation with experimental workflows.

A. Chemistry Simulation

Inorganic Reactions: The simulation of inorganic reac-
tions is designed based on a database encompassing both
reaction and chemical substance information. The database
includes data on 69 different chemical substances, each
characterized by its color, enthalpy values, and physical
state. Additionally, it contains information on 65 fundamental
reactions, specifying the reactants, products, and their stoi-
chiometric ratios.

The simulator accepts input as a dictionary, with reactant
names as keys and numbers of mole as values. The simulator
is capable of performing iterative reactions, which allows
for generating over 1000 possible reactions through various
combinations.

For the output, the component interface outputs a dictio-
nary of the same format, detailing the remaining reactants
and reaction products. Furthermore, the representation inter-
face provides a comprehensive output dictionary, including

data on the color of the reaction mixture, enthalpy changes,
pH levels, temperature changes, and the physical state of the
resultant substances.

Precisely, the core framework of the inorganic reaction
simulator is shown in Fig. 2. The detailed procedure within
this simulator is discussed as follows.
• Database Indexing: Initially, the simulator verifies

whether the input reactants satisfy charge conservation
[37]. Following that, the simulator determines the impend-
ing reaction by sequentially matching in the database, i.e.,
whether the reactants of the retrieved reaction is included
in the current reagents.

• Reaction Extraction: The simulator then divides current
reagents into two parts. The reacting part is extracted
from the current reagents according to the reactants in the
retrieved reaction, and the spectating part is the remaining
reagents which is not involved in this reaction. In this way,
the simulator ensures that only the necessary reactions are
considered in this reaction cycle, thereby streamlining the
reaction prediction process.

• Reaction Quantity Calculation: After reaction extraction,
the simulator identifies which ion is completely consumed
first to calculates the reaction quantity, N. This dimen-
sionless quantity shows how many moles of the ”reaction
equation” are involved in the process, thereby determines
the amount of reaction. Using this number, the simulator
subtracts the amount of each reactant used and adds the
generated products from the current reagents, yielding the
final composition of substances.

• Mid-State Calculation The computation of intermediate
states uses a differential iteration method as (1). n(t),
n(t +∆t) is the amount of substance at the current and
next time step, ∆t is the time increment differential. rate
is the reaction rate, and ν is the stoichiometric coefficient
of the substance in the reaction. The unit for each vari-
able is indicated in the project website https://www.omni-
chemistry.com.

n(t +∆t) = n(t)+ rate ·∆t ·ν (1)

The reaction rate [38], [39] is calculated as (2). k, c(A),
ma represents the rate constant,concentrations of reactants
A, reaction order of A.

rate = k · c(A)ma · c(B)mb (2)

The iteration starts when the reaction begins. This process
continues until the reaction rate falls below a certain
threshold, at which point the reaction is considered com-
plete. During this process, the composition of current
reagent at each time step is recorded and then compiled
into a list, which represents the intermediate state data of
the reaction.

• Concentration Calculation: The simulation proceeds by
adding the total volume V of the mixture, then calculating
the concentration c as (3) , where n is the amount of
substance of a particular solute. This calculation forms
the basis for subsequent concentration-dependent compu-
tations.
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c =
n
V

(3)

• Enthalpy Change Calculation: The simulator then com-
putes the heat absorption Q based on reaction quantity
as (4), where N is the reaction quantity, ∆H is enthalpy
change per equation recorded in the database. For multiple
reactions, Hess’s Law is used to sum the enthalpy changes
of individual steps to obtain the net enthalpy change.

Q = N ·∆H (4)

• Temperature Change Calculation: Utilizing the specific
heat capacity C of the solvent, the simulator calculates the
temperature change ∆T resulting from the reaction. The
change is determined by (5), where ρ is the density and
V is the volume of the solution. Temperature changes is
important in analyzing reaction rates and equilibria.

∆T =
Q

C ·ρ ·V
(5)

• RGBA Color Calculation: The simulator calculates the
RGBA color change in a reaction mixture by evaluating
several factors. First, it determines the transparency a
of the solution using an exponential model based on
the concentrations of reactants and products [40], [41],
with RGB values remaining constant. As (6), c is the
concentration of the solute and K is a constant dependent
on the identity of reactants and products.

a = 1−10−K·c (6)

Second, it assigns priority to different physical states:
solid substances contribute to opacity; liquids are mixed
based on RGBA values; gases are excluded from the color
calculation. Third, a negative mixing model is applied
for color mixing in solutions without solids [42]. Finally,
the simulator converts UV/Vis spectrum data into RGB
values to represent the visible color of substances in the
simulation [43]–[45].

• pH Calculation:The simulator calculates the pH of the so-
lution through several steps. First, it establishes a reference
table of water’s ionization constant (Kw) for temperatures
between 0 and 100 degrees Celsius at standard atmospheric
pressure, enabling precise interpolation at any temperature.
Then, it focuses on the ionization of strong electrolytes
while ignoring weak electrolytes [46]. In this way, the
simulator determines the concentrations of hydrogen (H+)
and hydroxide ions (OH−) by (7).

Kw = c(H+) · c(OH−) (7)

Based on the ionization constant and these ion concentra-
tions, the simulator accurately calculates the pH by (8),
providing insight into the solution’s acidity.

pH =− logc(H+) (8)

Organic Reactions: The simulation of organic reactions
integrates data from RXN for Chemistry [7] for reaction
information and ChemSpider [5] for chemical substance
information. Similar to the inorganic simulator, this simulator
also has a component and representation interface as output.
The system accepts reactants represented by SMILES [47]

strings and outputs the corresponding products for reaction
product prediction. It’s also capable of predicting reaction
yields by RXN for Chemistry, therefore determines the com-
ponent output for the specific reaction. For the representation,
the simulator employs web scraping to query substance
information; given a SMILES string, it retrieves a dictionary
of properties and values. For more comprehensive data, users
can query additional information using the CAS number [48]
of the substance.

Simulator Interface: To integrate the chemical aspects
with the operational aspects seamlessly, the simulator is
embedded into a container class, which features three main
methods: initialization, updating, and information retrieval.
The initialization method distinguishes between organic and
inorganic reactions and sets the chemical components by
name, amount, and volume. The updating method simulates
sampling or mixing operations and can automatically conduct
reactions. The output of this method represents the inter-
mediate state of the container’s contents, calculated through
rate equations with an adjustable time step to suit simulation
tasks in Omniverse. The information retrieval method allows
access to component or representation information, enabling
direct queries about concentration, color, and other properties
for any container. This approach binds chemical information
to simulated reagent bottles, facilitating clear demonstrations.
It also aligns chemical reactions with operational actions,
making the simulation intuitive. This integrated simulating
method allows for accurate predictions and detailed repre-
sentation calculations. It’s essential for further studies in
chemistry, including analysis of intermediate states and RL.

B. Chemical Environment

Chemistry3D offers an advanced and meticulously de-
signed environment for simulating chemical experiments, as
shown in Fig. 3. This environment, built upon the NVIDIA
Omniverse platform, integrates a variety of features essential
for both chemical and robotic research.

Rich Chemical Assets: Chemistry3D is endowed with
an extensive series of chemical containers and instruments,
meticulously designed to facilitate a diverse range of chem-
ical reactions. These encompass both organic and inorganic
reactions, as well as liquid-liquid and liquid-solid interac-
tions. This vast collection of chemical assets allows for
the simulation of various chemical experiments, offering

RoboticRobotic

Liquid and solidLiquid and solidChemical environmentChemical environment Robot Operating SystemRobot Operating System

High-Fidelity RenderingHigh-Fidelity Rendering

Chemical containersChemical containers

Fig. 3: Illustration of simulated chemistry environment. The chem-
ical containers with a green background were 3D scanned from real
objects. This environment is designed to support a wide range of
chemical and robotic experiments, providing a highly detailed and
interactive platform.
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researchers and educators a versatile platform to explore
different reaction dynamics.

Robotic Assets: The environment is equipped with nu-
merous robotic arms and robotic grippers, enhancing the
potential for robotic simulations. These robotic systems are
capable of performing precise tasks such as grasping, shak-
ing, pouring, stirring, placing, and moving chemical contain-
ers. This capability significantly expands the possibilities for
robotic experimentation and automation within the chemical
laboratory setting.

Fluid and Rigid Body Simulation: Chemistry3D excels
in simulating both fluid and rigid body interactions with
high fidelity. This capability is particularly beneficial for
visualizing intricate chemical processes involved in both
inorganic and organic experiments. For instance, the platform
can realistically simulate the dissolution of solid compounds
in a liquid. Additionally, it can accurately depict the merging
of two liquids and the resultant color changes, providing a
vivid representation of reaction progress and intermediate
states.

High-Fidelity Rendering: The platform supports highly
realistic rendering and light simulation, which is essential
for accurately representing chemical experiments involving
transparent materials. In many chemical lab settings, instru-
ments such as glass beakers and flasks are transparent, posing
challenges for vision-based tasks. Chemistry3D excels in
simulating these transparent objects, providing detailed vi-
sual representations of chemical reactions, including changes
in color and clarity. This enhances the effectiveness of visual
inspections and analyses, which is crucial for monitoring and
understanding chemical processes.

Robot Operating System: Chemistry3D inherits robust
support from Isaac-Sim, including integration with ROS and
ROS2. This compatibility allows for a diverse range of
robotic development and experimentation, enabling users to
leverage advanced robotic operating systems for controlling
and simulating robotic behavior within the chemical environ-
ment. This integration is crucial for developing and testing
sophisticated robotic applications and workflows.

C. Robotic Manipulation

Chemistry3D aims to integrates robotic operations with
the simulation of chemical experiments, leveraging Nvidia
Omniverse, PhysX 5, and IsaacSim for realistic simulations
of rigid bodies, fluids, soft bodies. This platform enhances re-
alism through accurate physics simulation and light rendering
effects. To advance robotic operations within Chemistry3D,
we proposes tasks focused on chemical experimental manip-
ulation, embodied intelligence manipulation, and RL tasks.

Chemistry manipulation: Chemical experimental manip-
ulations frequently involve the desired motions of target ob-
jects, e.g., pouring. Consequently, the tasks in Chemistry3D
encompass a variety of chemical experimental operations.
We have selected four common chemical experimental op-
erations including picking, placing, pouring, stirring, and
shaking. In our experiments, we developed simulation tasks
within Chemistry3D to demonstrate these operations.

Embodied intelligence: Embodied intelligence involves
the interaction of semantic information between agents and
humans, enabling robots to understand and perform desired
chemical operations. This capability is vital for the automa-
tion of chemical processes. However, since LLMs cannot al-
ways accurately produce results as expected in experiments,
we introduced LLM-based agents in Chemistry3D to support
debugging these agents within the simulator. We designed
specific chemical experiment scenarios to demonstrate that
the development of embodied intelligence is possible in
Chemistry3D. These scenarios showcase the potential for
robots to autonomously observe the environment and com-
plete specified tasks within the platform.

RL task: RL has become a significant algorithm in dex-
terous manipulation involving grasping, moving, and even
stirring objects [49], [50]. We believe that the techniques
developed in these works are transferable to operations
involving chemical instruments. IsaacGym is a well-regarded
simulation environment specifically designed to support
robot learning. The Omniverse Isaac Gym Reinforcement
Learning (OmniIsaacGymEnvs) for Isaac Sim repository
provides RL examples compatible with IsaacSim and has
become a widely adopted environment for RL research.
Utilizing this repository, we implemented a reward function
setup similar to the provided examples and successfully
achieved the picking of chemical containers. The RL task
demonstrates that Chemistry3D can support RL research in
robotic manipulation.

IV. EXPERIMENTS

In this section, we investigate the capabilities of chem-
ical reaction simulation and robotic manipulation within
the Chemistry3D. All experiments are conducted within a
simulated chemistry environment. As shown in Fig. 4, we
have carried out four experiments based on Chemistry3D,
covering chemical manipulation, visual Sim2Real, embodied
intelligence, and RL. Additionally, we have integrated the
chemical simulator to perform both organic and inorganic
experiments.

A. Chemical Experiments

In chemical experiments, we focus on inorganic and
organic reactions, integrating robotic operations within Isaac-
Sim to enhance the experimental process. (See the project
website for more details.)

Controller Manager

StirStirPourPour ShakeShakePickPick PlacePlace

Reinforcement

Learning

Embodied 

Intelligence
Visual Sim2Real

Chemical

Manipulation(a) (b) (c) (d)

Fig. 4: Illustration of the motion and experiments in Chemistry3D.
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Inorganic Experiment: We selected redox reactions due
to their notable color and state changes. Experiments in-
volved potassium permanganate (KMnO4) with ferrous chlo-
ride (FeCl2), and hydrochloric acid (HCl) with iron(II) oxide
(FeO). The center of mass of reactants determines contact
points, triggering color and state transformations. Chem-
istry3D outputs detailed reaction data such as temperature,
enthalpy change, and pH at each time step.

Organic Experiment: Focused on the simulation of mid-
state products rather than color changes, we synchronized re-
action steps with IsaacSim simulation. Using the substitution
reaction between bromine (Br2) and anthracene (C14H10) as
an example, mid-state products are generated upon reactant
contact. This enables real-time optimization of final products
and robotic manipulations.

B. Chemical Manipulation

As shown in Fig. 4(a), chemical manipulation often in-
volves tasks such as picking and placing. Our experiments
demonstrated the effective deployment of robotic picking
and pouring operations in chemical processes. We designed
modular operations, including picking, pouring, shaking,
stirring, and placing, managed by a Controller Manager. This
manager ensures the sequential and integrated execution of
these operations. We successfully combined picking, pour-
ing, and placing operations, as illustrated in our experimental
results. (See the project website for more details.)

C. Visual Sim2Real

Chemical experiment containers are mostly transparent ob-
jects. Transparent objects possess intricate optical properties,
and current visual tasks for transparent objects often concen-
trate on depth completion [51], [52], multi-modal analysis
[53], and other research areas. Regardless of the approach,
most studies rely heavily on large-scale simulation datasets
[54], [55], making high-fidelity transparent simulations a
crucial foundation for research and grasping tasks involving
transparent objects. Our framework integrates Segmentation
Models PyTorch [56], offering mainstream encoder-decoder
architectures to facilitate network deployment in deep learn-
ing research areas such as depth completion and multi-
modal analysis. We deployed various network combinations
and conducted quantitative experiments on our simulation
datasets. As illustrated in Table II, quantitative compar-
isons using Intersection over Union (IoU), Pixel Accuracy
(PA), F1-Score, and F2-Score showed that the EfficientNet-
DeepLabV3 combination outperformed others, achieving top
scores across all metrics.

TABLE II: Performance Metrics of Different Encoder-
Decoder Combinations

Encoder Decoder IoU PA F1-Score F2-Score

TGCNN [53] - 0.6604 0.9875 0.7851 0.7220
ResNet [57] Unet [58] 0.7097 0.9902 0.8181 0.7813
VGG [59] Unet++ [60] 0.6963 0.9896 0.8056 0.7494

EfficientNet [61] DeepLabV3 [62] 0.7582 0.9917 0.8558 0.8112

Additionally, we further validated the Sim2Real ability by
performing an object detection task. For this task, we selected
YOLO [63] as our algorithm. The model trained within the
simulation environment was evaluated for object detection
in both simulated and real-world environments. The results
are consistent with results in the semantic segmentation
task, confirming that Chemistry3D effectively supports visual
Sim2Real.(See the project website for more details.)

D. Embodied Intelligence

We integrated multiple functional agents into Chemistry3D
using LLMs to understand and execute tasks. We designed an
inorganic chemistry experiment scene (as shown in Fig. 4(c)),
where the robot is expected to carry out the desired ex-
perimental operations through natural language input. The
scene includes containers with KMnO4, FeCl2, and empty
beakers and the robot can implicitly acquire object labels
to observe the environment. Using Chemistry3D’s chemical
database, our agent can predict possible reactions and execute
the corresponding actions. Additionally, with the controller
manager described in Section IV-B, the experiment supports
combining various manipulations.(See the project website for
more details.)

E. Reinforcement Learning

OmniIsaacGymEnvs facilitates complex RL tasks in
Chemistry3D. We demonstrated the capability of RL research
by setting the RL task of picking as shown in Fig. 4(d). Using
Proximal Policy Optimization (PPO) [64] as the algorithm,
The experiment involved 2048 environments, 3500 epochs,
and a learning rate of 5×10−4, applied consistently across
multiple experiments. We plotted the reward and success rate
curves, showing robust outcomes. The results confirmed that
robotic arms could successfully grasp chemical containers
within Chemistry3D. (See the project website for more
details.)

V. CONCLUSION

We presented a 3D robot simulation toolkit based on
NVIDIA’s Omniverse platform for chemical experiments.
This system encompasses various chemical containers and
robotic models, supporting transparent objects and fluid
simulations. We have established an extensive chemical
dataset that provides real-time feedback on various param-
eter changes during experiments. Through RL tasks, large
language modeling, and Sim2Real experiments, we have
demonstrated the significant potential of this system in
machine learning applications. However, simulating chemical
reactions balances computational complexity with model
accuracy, requiring more resources for precise models. In-
organic reaction simulations are limited by database quality,
which may not cover all reactions. Omniverse’s current
capabilities can’t fully replicate gas-phase reactions. This
system enhances the visualization and interactivity of chem-
ical experiments and offers a new tool for interdisciplinary
research in chemistry and robotics, promising to advance
related fields.
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Loew, P Röse, and K Rafeiner. Models for the representation of
knowledge about chemical reactions. Journal of Chemical Information
and Computer Sciences, 30(4):467–476, 1990.

[33] Ola Engkvist, Per-Ola Norrby, Nidhal Selmi, Yu-hong Lam, Zhengwei
Peng, Edward C Sherer, Willi Amberg, Thomas Erhard, and Lynette A
Smyth. Computational prediction of chemical reactions: current status
and outlook. Drug Discovery Today, 23(6):1203–1218, 2018.

[34] Omniverse. https://www.nvidia.com/en-us/omniverse/.
[35] Mathias Hummel and Kees van Kooten. Leveraging nvidia omniverse

for in situ visualization. In High Performance Computing: ISC High
Performance 2019 International Workshops, Frankfurt, Germany, June
16-20, 2019, Revised Selected Papers 34, pages 634–642, 2019.

[36] Philippe Schwaller, Daniel Probst, Alain C. Vaucher, Vishnu H. Nair,
David Kreutter, Teodoro Laino, and Jean-Louis Reymond. Mapping
the space of chemical reactions using attention-based neural networks.
Nature Machine Intelligence, 3:144 – 152, 2020.

[37] Alain Giraud and Michel Petit. Chemistry of Charge Conservation,
pages 136–174. Dordrecht, 1978.

[38] C. Heald and A. C. K. Smith. Ionic Reactions and Electrochemical
Methods of Analysis, pages 278–333. London, 1974.

[39] Bruce J. Berne, Michal Borkovec, and John E. Straub. Classical and
modern methods in reaction rate theory. The Journal of Physical
Chemistry, 92(13):3711–3725, 1988.

[40] Chan-Yuan Tan and Yao-Xiong Huang. Dependence of refractive
index on concentration and temperature in electrolyte solution, polar
solution, nonpolar solution, and protein solution. Journal of Chemical
& Engineering Data, 60(10):2827–2833, 2015.

[41] Wen Li Wei and Xiu Fang Yang. Research on liquid concentration
real-time detecting system based on f-p interferometer. In Experi-
mental Mechanics in Nano and Biotechnology, volume 326 of Key
Engineering Materials, pages 143–146, 12 2006.

[42] D. Sundararajan. Color Image Processing, pages 407–438. Singapore,
2017.

[43] Neetha Udayakumar. Visible Light Imaging, pages 67–86. Berlin,
Heidelberg, 2014.

[44] Brand Fortner and Theodore E. Meyer. Light Spectra to RGB, pages
47–62. New York, NY, 1997.

[45] John Walker. Colour rendering of spectra.
https://www.fourmilab.ch/documents/specrend/.

[46] Jean-Louis Burgot. Activities of Electrolytes, pages 117–133. Cham,
2017.

[47] David Weininger. Smiles, a chemical language and information
system. 1. introduction to methodology and encoding rules. Journal
of Chemical Information and Computer Sciences, 28(1):31–36, 1988.

[48] Andrea Jacobs, Dustin Williams, Katherine Hickey, Nathan Patrick,
Antony J. Williams, Stuart Chalk, Leah McEwen, Egon Willighagen,

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1957 submitted to 2025 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2024.



Martin Walker, Evan Bolton, Gabriel Sinclair, and Adam Sanford. Cas
common chemistry in 2021: Expanding access to trusted chemical
information for the scientific community. Journal of Chemical Infor-
mation and Modeling, 62(11):2737–2743, 2022. PMID: 35559614.

[49] Rae Jeong, Jost Tobias Springenberg, Jackie Kay, Daniel Zheng,
Yuxiang Zhou, Alexandre Galashov, Nicolas Heess, and Francesco
Nori. Learning dexterous manipulation from suboptimal experts. arXiv
preprint arXiv:2010.08587, 2020.

[50] Hao Zhang, Hongzhuo Liang, Lin Cong, Jianzhi Lyu, Long Zeng,
Pingfa Feng, and Jianwei Zhang. Reinforcement learning based
pushing and grasping objects from ungraspable poses. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages
3860–3866, 2023.

[51] Hongjie Fang, Hao-Shu Fang, Sheng Xu, and Cewu Lu. Transcg: A
large-scale real-world dataset for transparent object depth completion
and a grasping baseline. IEEE Robotics and Automation Letters,
7(3):7383–7390, 2022.

[52] Haoping Xu, Yi Ru Wang, Sagi Eppel, Alàn Aspuru-Guzik, Florian
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